月归档:五月 2012

Oracle 8.0.5 安装过程截图

此多媒体陈列厅包含 7 张图像

作为新一代dba(包括我),很少有机会能够接触到ORACLE 8.0.5数据库. … 继续阅读

更多多媒体陈列厅 | 一条评论

cache buffer lru chain latch等待事件

cache buffer lru chain latch官方解释

The cache buffer lru chain latch is acquired in order to introduce a new block into the buffer cache 
and when writing a buffer back to disk, specifically when trying to scan the LRU (least recently used) chain 
containing all the dirty blocks in the buffer cache.

cache buffer lru chain latch可能原因

想查看或者修改LRU+LRUW的进程,始终要持有cache buffers lru chain latch。
若在此过程中发生争用,则要等待latch:cache buffers lru chain 事件。
总结出来如下两种情况会导致cache buffers lru chain latch:
1.进程欲读取还没有装载到内存上的块时,通过查询LRU 列分配到所需空闲缓冲区,在此过程中需要cache buffers lru chain latch。
2.DBWR 为了将脏缓冲区记录到文件上,查询LRUW 列,将相应缓冲区移动到LRU 列的过程中也要获得cache buffers lru chain latch。
2.1)DBWR在如下情况下将脏缓冲区记录到文件里。
2.2)Oracle 进程为了获得空闲缓冲区,向DBWR 请求记录脏缓冲区时;
2.3)Oracle进程为执行Parallel Query 或Tablespace Backup,Truncate/Drop 等工作,请求记录相关对象的脏缓冲区时; 
2.4)周期性或管理上的原因检查点(checkpointing)被执行时。
2.5)Oracle 为了保障将通过FAST_START_MTTR_TARGET(或LOG_CHECKPOINT_TIMEOUT)指定的时间的恢复,周期性执行检查点。
2.6)管理员执行检查点命令或根据日志文件切换,也会发生检查点。

cache buffers lru chain latch争用的最重要的原因是过多请求空闲缓冲区。低效的SQL语句是过多请求空闲缓冲区的最典型情况,若多个会话同时执行低效的SQL语句,则在查询空闲缓冲区过程中和记录脏缓冲区的过程中,为了获取buffers lru chain latch发生争用。多个会话同时扫描不同表或索引时,发生cache buffers lru chain latch争用的概率高。多个会话将各不相同的块载入到内存过程中,确保空闲缓冲区的请求会增多,因此发生对工作组争用的概率将提高。特别是因为数据修改频繁,以至于脏缓冲区数量多,正因此DBWR 因为检查点而查询LRUW 列的次数频繁,所以cache buffers lru chain latch争用将更加严重。cache buffers lru chain latch争用的另一个重要特点就是伴随着物理I/O。若是低效的索引扫描引起的问题,则同时发生db file sequential read 等待和lru chain latch争用;若是不必要的全表扫描引起的问题,则同时发生db file scattered read 等待和lru chain latch争用。事实上,cache buffers chains latch争用和cache buffers lru chain latch争用同时发生的情况较多,因为复杂的应用程序将复合地应用上述模式。data buffer过小或检查点周期过短时,也会增加cache buffers lru chain latch争用;但是现在的数据库的data buffer都不会太小,而检查点周期一般使用缺省值,所以通常定位cache buffers lru chain latch的原因还是在低效的SQL语句上

发表在 Oracle性能优化 | 评论关闭

CACHE BUFFERS CHAINS等待事件

关于CACHE BUFFERS CHAINS描述

CACHE BUFFERS CHAINS latch is acquired when searching for data blocks cached in the buffer cache. 
Since the Buffer cache is implemented as a sum of chains of blocks, each of those chains is protected 
by a child of this latch when needs to be scanned. Contention in this latch can be caused by very heavy 
access to a single block. This can require the application to be reviewed.

产生CACHE BUFFERS CHAINS原因

The main cause of the cache buffers chains latch contention is usually a hot block issue. 
This happens when multiple sessions repeatedly access one or more blocks that are protected 
by the same child cache buffers chains latch.

CACHE BUFFERS CHAINS 处理方法
1) Examine the application to see if the execution of certain DML and SELECT statements can be reorganized to eliminate contention on the object.

处理方法如下:
--通过报告确定latch: cache buffers chains 等待

Top 5 Timed Events                                      Avg    %Total
~~~~~~~~~~~~~~~~~~                                      wait   Call
Event                          Waits        Time (s)    (ms)   Time   Wait Class
------------------------------ ------------ ----------- ------ ------ ----------
latch: cache buffers chains          74,642      35,421    475    6.1 Concurrenc
CPU time                                         11,422           2.0
log file sync                        34,890       1,748     50    0.3 Commit
latch free                            2,279         774    340    0.1 Other
db file parallel write               18,818         768     41    0.1 System I/O
-------------------------------------------------------------

--找出逻辑读高sql
SQL ordered by Gets         DB/Inst:  Snaps: 1-2
-> Resources reported for PL/SQL code includes the resources used by all SQL
statements called by the code.
-> Total Buffer Gets:   265,126,882
-> Captured SQL account for   99.8% of Total


                            Gets                CPU      Elapsed
Buffer Gets    Executions   per Exec     %Total Time (s) Time (s)  SQL Id
-------------- ------------ ------------ ------ -------- --------- -------------
   256,763,367       19,052     13,477.0   96.8 ######## ######### a9nchgksux6x2
Module: JDBC Thin Client
SELECT * FROM SALES ....

     1,974,516      987,056          2.0    0.7    80.31    110.94 ct6xwvwg3w0bv
SELECT COUNT(*) FROM ORDERS ....

--逻辑读大对象
Segments by Logical Reads           
-> Total Logical Reads:     265,126,882
-> Captured Segments account for   98.5% of Total

           Tablespace                      Subobject  Obj.       Logical
Owner         Name    Object Name            Name     Type         Reads  %Total
---------- ---------- -------------------- ---------- ----- ------------ -------
DMSUSER    USERS      SALES                           TABLE  212,206,208   80.04
DMSUSER    USERS      SALES_PK                        INDEX   44,369,264   16.74
DMSUSER    USERS      SYS_C0012345                    INDEX    1,982,592     .75
DMSUSER    USERS      ORDERS_PK                       INDEX      842,304     .32
DMSUSER    USERS      INVOICES                        TABLE      147,488     .06
          -------------------------------------------------------------
处理思路:
1.Look for SQL that accesses the blocks in question and determine if the repeated reads are necessary. 
  This may be within a single session or across multiple sessions.

2.Check for suboptimal SQL (this is the most common cause of the events)  
 look at the execution plan for the SQL being run and try to reduce the 
 gets per executions which will minimize the number of blocks being accessed 
 and therefore reduce the chances of multiple sessions contending for the same block.

Note:1342917.1 Troubleshooting ‘latch: cache buffers chains’ Wait Contention

2) Decrease the buffer cache -although this may only help in a small amount of cases.

3) DBWR throughput may have a factor in this as well.If using multiple DBWR’s then increase the number of DBWR’s.

4) Increase the PCTFREE for the table storage parameters via ALTER TABLE or rebuild. This will result in less rows per block.

找出热点对象
First determine which latch id(ADDR) are interesting by examining the number of 
sleeps for this latch. The higher the sleep count, the more interesting the 
latch id(ADDR) is:

SQL> select CHILD#  "cCHILD"
     ,      ADDR    "sADDR"
     ,      GETS    "sGETS"
     ,      MISSES  "sMISSES"
     ,      SLEEPS  "sSLEEPS" 
     from v$latch_children 
     where name = 'cache buffers chains'
     order by 5, 1, 2, 3;

Run the above query a few times to to establish the id(ADDR) that has the most 
consistent amount of sleeps. Once the id(ADDR) with the highest sleep count is found
then this latch address can be used to get more details about the blocks
currently in the buffer cache protected by this latch. 
The query below should be run just after determining the ADDR with 
the highest sleep count.

SQL> column segment_name format a35
     select /*+ RULE */
       e.owner ||'.'|| e.segment_name  segment_name,
       e.extent_id  extent#,
       x.dbablk - e.block_id + 1  block#,
       x.tch,
       l.child#
     from
       sys.v$latch_children  l,
       sys.x$bh  x,
       sys.dba_extents  e
     where
       x.hladdr  = '&ADDR' and
       e.file_id = x.file# and
       x.hladdr = l.addr and
       x.dbablk between e.block_id and e.block_id + e.blocks -1
     order by x.tch desc ;

Example of the output :
SEGMENT_NAME                     EXTENT#      BLOCK#       TCH    CHILD#
-------------------------------- ------------ ------------ ------ ----------
SCOTT.EMP_PK                       5            474          17     7,668
SCOTT.EMP                          1            449           2     7,668

Depending on the TCH column (The number of times the block is hit by a SQL 
statement), you can identify a hot block. The higher the value of the TCH column,
the more frequent the block is accessed by SQL statements.

5) Consider implementing reverse key indexes (if range scans aren’t commonly used against the segment)

发表在 Oracle性能优化 | 评论关闭